Synthesis and Characterization of some Water Soluble Polymers

ANURADHA RANGARAJ, VEENA VANGANI, ANIMESH K. RAKSHIT
Department of Chemistry, Faculty of Science, M.S. University of Baroda, Baroda 390002, India

Received 7 June 1996; accepted 16 January 1997

Abstract

Homopolymers and copolymers of acrylamide (AA) and acrylic acid (AAc) were synthesized by the free radical solution polymerization technique. Feed ratios of the monomers were $85: 15(\mathrm{w} / \mathrm{w}), 65: 35(\mathrm{w} / \mathrm{w})$, and $50: 50(\mathrm{w} / \mathrm{w})$ of acrylamide and acrylic acid, respectively, for synthesis of copolymers. All reactions were carried out in aqueous media, except for the synthesis of polyacrylic acid, where the medium was n butanol. Hydrogen peroxide, potassium persulfate, and benzoyl peroxide were used as initiators. The copolymers were purified by removing homopolymers. The homopolymers and copolymers were characterized by infrared (IR), ${ }^{13}$ C-nuclear magnetic resonance (NMR), ${ }^{1} \mathrm{H}-\mathrm{NMR}$, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and viscosity measurements. The fusion temperature and the energy change for various phase transitions were obtained from DSC measurements. The activation energy values for various stages of decomposition were calculated from TGA. The activation parameters for the viscous flow (i.e., free energy, enthalpy, and entropy of activation) were evaluated from the viscosity measurements. Voluminosity and Simha shape factor were also calculated for different systems. Effects of various concentrations of electrolytes, NaNO_{3}, and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ on viscosity behavior were studied. © 1997 John Wiley \& Sons, Inc. J Appl Polym Sci 66: 45-56, 1997

Key words: homopolymer; copolymer; polyacrylic acid; polyacrylamide; characterization; synthesis

INTRODUCTION

Polyacrylamide and copolymers of acrylamide with other monomers have shown a number of properties leading to a variety of industrial applications. Of growing importance are those related to their use as water soluble viscosifiers and displacement fluids in enhanced oil recovery. ${ }^{1}$ Polyacrylamide as such has a variety of applications due to its ability to flocculate solids in aqueous suspensions. ${ }^{2}$ Acrylamide-based polyelectrolytes were found to reduce surface charges and enable the primary particles to coagulate. ${ }^{3}$ Acrylic acid and its copolymers with acrylamide and other

[^0]monomers are used in fields as varied as mining, textile manufacture, oil-well drilling, secondary oil recovery, and agricultural soil modification. ${ }^{4}$ The solution properties of polyelectrolytes are rather unusual. A decrease in the viscosity of polyacrylamide solutions in the presence of mono and multivalent electrolytes (e.g., $\mathrm{NaCl}, \mathrm{CaCl}_{2}$, etc.) is well known. ${ }^{5}$

Different researchers in recent years have worked with polyacrylamide (PAA), polyacrylic acid (PAAc), and their copolymers. IR spectroscopy has been used to study the complexation of PAA with PAAc. ${ }^{6}$ Copolymers of acrylamide with methyl acrylate, ${ }^{7}$ and sodium acrylate ${ }^{8}$ have been studied spectroscopically. Acrylamide-acrylic acid copolymers are being used as thickeners for improved performance in alkaline conditions. ${ }^{9}$ A recent review discusses the properties and uses of copolymers of acrylamide with acrylic acid and various acrylates
in the petroleum industry. ${ }^{10}$ The copolymerization of acrylamide and acrylic acid ${ }^{11}$ has been studied recently with reference to amounts of initiator, temperature, pH , time, etc. Tercopolymerization of acrylic acid, acrylamide and $N-[(4$-decyl) phenyl $]$ acrylamide has been reported. ${ }^{12}$ Our interest in the synthesis and characterization of water soluble PAA, PAAc, and P(AA-AAc) copolymers arises because of our desire to study the interaction of these polymers with various ionic and nonionic surfactants, as both polymers and surfactants are present in these systems.

In this article we present the synthesis and characterization of polyacrylamide, polyacrylic acid and acrylic acid-acrylamide copolymers. The effect of NaNO_{3} and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$ on the viscosity property of the aqueous solutions of the abovementioned homo and copolymers are also discussed in detail.

EXPERIMENTAL

Acrylamide (Mitsubishi Chemicals Ltd.) and acrylic acid (National Chemical, Baroda) were used for polymerization without any prior purification. Potassium persulfate (Merck, India) and hydrogen peroxide (Glaxo, India, $30 \% \mathrm{w} / \mathrm{v}$) were used as received. The solvents were freshly distilled prior to use.

Elemental analysis was done on a FISONS, EA 1108, C, H, N analyzer.

IR spectra of the films of the homopolymers and copolymers were recorded on a Shimadzu IR-408 spectrophotometer. The films were prepared by dissolving the polymers in water and pouring the solution over a pool of mercury. The films were obtained by vacuum evaporation of the solvent.

The NMR of the polymer solutions in $\mathrm{D}_{2} \mathrm{O}$ were recorded on a Varian XL, 300 MHz , for PMR and 75 MHz for ${ }^{13} \mathrm{C}-\mathrm{NMR}$, at the RSIC, IIT, Bombay, India.

TGA was recorded on a Shimadzu thermal analyzer DT-30 B. The TGA analysis was done in the presence of air. DSC was recorded on a Mettler ME 4000.

Viscosity studies of different solutions were carried out with the help of an Ubbelohde viscometer, placed vertically in a thermostat, at all required temperatures ($\pm 0.05^{\circ} \mathrm{C}$).

Polymerization of acrylamide, acrylic acid, and their copolymers, in various feed ratios, was carried out by the free radical solution polymerization technique ${ }^{13}$ as described below.

Polyacrylamide was synthesized as follows:
$20 \%(\mathrm{w} / \mathrm{v})$ solution of acrylamide in water, in presence of $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{2}(3 \% \mathrm{w} / \mathrm{v})$ was taken in a three-necked flask, under nitrogen atmosphere. The reaction mixture was stirred at $82^{\circ} \mathrm{C}$ for a period of one-half hour. The three-necked flask was equipped with a water condenser and was placed in a thermostat maintained at the desired temperature. The reaction mixture after polymerization was poured into an excess of methanol to precipitate out the PAA. The PAA obtained was repeatedly washed with methanol and finally dried in vacuo before characterization.

Synthesis of PAAc was carried in nonaqueous medium: 40 g of acrylic acid in 160 g of n-butanol was taken in a three-necked flask. The reaction set up was similar to that used for synthesis of PAA. Benzoyl peroxide (0.4 g) was used as the initiator. The reaction mixture was stirred for a period of 5 h under a nitrogen atmosphere at $80^{\circ} \mathrm{C}$. PAAc was obtained by pouring the reaction mixture into the nonsolvent, nonane. It was dried in vacuo before characterization.

Copolymerization of acrylic acid and acrylamide was carried out with different feed ratios of the two monomers. ${ }^{14}$ The ratios chosen for study were $50: 50,65: 35$, and $85: 15(\mathrm{w} / \mathrm{w})$ acrylamide and acrylic acid, respectively. The recipe for the synthesis of copolymer $85: 15(\mathrm{w} / \mathrm{w})$ of acrylamide and acrylic acid (AA-AAc) was as follows: 17 g acrylamide, 3 g acrylic acid, and 0.14 $\mathrm{g} \mathrm{K} \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ were taken in 180 mL of $\mathrm{H}_{2} \mathrm{O}$. The reaction was carried out under nitrogen atmosphere at $68^{\circ} \mathrm{C}$ for a period of 2.5 h . The reaction setup remained the same as described in the earlier paragraph. The polymeric product was obtained by reprecipitation in methanol. The reprecipitated product was further purified by removal of the respective homopolymers. The homopolymer PAAc was soluble in dioxane. The product obtained on reprecipitation was treated with dioxane to remove PAAc. The product hence obtained was dissolved in a methanol-water mixture (50: $50 \mathrm{v} / \mathrm{v}$). The homopolymer PAA remained insoluble and was filtered out. The copolymer, which was soluble in the water-methanol mixture, was poured into an excess of pure methanol to reprecipitate the copolymer, which was thoroughly washed with methanol and finally dried in vacuo.

The reaction conditions were exactly the same for copolymers having acrylamide and acrylic acid in feed ratios $50: 50(\mathrm{w} / \mathrm{w})$ and $65: 35(\mathrm{w} / \mathrm{w})$. The reaction mixture was heated at $68^{\circ} \mathrm{C}$ for a period of 2.5 h under a nitrogen atmosphere. The polymeric product obtained was also purified to

Figure 1 IR spectrum of PAAc.
remove the respective homopolymers. The purification procedure was exactly the same as used for the previous copolymer.

RESULTS AND DISCUSSION

The IR spectrum of PAAc is shown in Figure 1. The broad absorption band due to the $\mathrm{O}-\mathrm{H}$ bond present in the - COOH group was observed in the range of $3300-3500 \mathrm{~cm}^{-1} .{ }^{15}$ The $\mathrm{C}=\mathrm{O}$ bond of carboxylic acid was observed at $1720 \mathrm{~cm}^{-1}$. Two bands arising from $\mathrm{C}-\mathrm{O}$ stretching and $\mathrm{O}-\mathrm{H}$ bending appear in the spectrum. These are $\sim 1320-1210 \mathrm{~cm}^{-1}$ and $1440-1395 \mathrm{~cm}^{-1}$, respectively. Both of these bands involve some interaction between $\mathrm{C}-\mathrm{O}$ stretching and in-plane $\mathrm{C}-\mathrm{O}-\mathrm{H}$ bending. ${ }^{16}$ The IR spectra of AA-AAc copolymers show absorption bands typical of the constituent monomeric units and their relative intensity, depending on composition. The IR spectrum of AA-AAc copolymer ($65: 35$) is shown in Figure 2. The $\mathrm{C}=\mathrm{O}$ bond of the carbonamide group absorbs at $1650 \mathrm{~cm}^{-1}$. The $\mathrm{C}-\mathrm{N}$ stretching bond of primary amide was observed near 1400 cm^{-1}. PAA showed characteristic absorptions

Figure 2 IR spectrum of copolymer AA-AAc ($65: 35$).

Figure $3{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of PAA.
which agreed very well with those reported in the literature. ${ }^{17,18}$

Further evidence for the two comonomers incorporated was given by ${ }^{13} \mathrm{C}$-NMR spectra of the copolymers. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of PAA and copolymer AA-AAc ($65: 35$) are given in Figures 3 and 4. The chemical shift values of PAA (Fig. 3) are in agreement with those reported earlier. ${ }^{18-20}$ The methine carbon $\left(-\mathrm{CHCONH}_{2}\right)$ of the backbone resonates at 44.744 ppm and the backbone methylene carbon resonates between 36.76838.971 ppm . The carbonyl carbon appeared as a sharp singlet at 182.365 ppm . In the case of AAAAc copolymers (Fig. 4), an extra peak due to methine carbon (-CHCOOH) was observed at δ $=63.97 \mathrm{ppm} .^{21,22}$ The intensity of this peak increased with the increase in the amount of AAc incorporated. The carbonyl carbon of the -COOH group absorbs at $\delta=178.399-179.345 \mathrm{ppm}$. The intensity of this peak also increased with the increase in AAc content. The absorptions of the backbone $-\mathrm{CH}_{2}$ from both the monomers could not be distinguished from ${ }^{13} \mathrm{C}$-NMR spectra. The proton spectra of homopolymers and copolymers (not shown) supported the ${ }^{13} \mathrm{C}$-NMR spectra. The

Figure $4{ }^{13} \mathrm{C}$-NMR spectrum of copolymer AA-AAc (65:35).

Table I Composition of Acrylamide and Acrylic Acid in Feed and in Copolymers

	Mole Fraction of AA in Feed $\left(\mathbf{M}_{1}\right)$	Elemental Analysis $N(\%)$	Mole Fraction of AA in Copolymer $\left(\phi_{1}\right)$
Sample			
AA-AAc $(50: 50)$	0.504	8.66	0.44
AA-AAc $(65: 35)$	0.653	10.16	0.52
AA-AAc $(85: 15)$	0.852	14.86	0.76

methylene protons of PAA appeared as a broad peak at $\delta=1.6-1.8 \mathrm{ppm} .{ }^{22}$ The methine protons resonate at $\delta=2.28 \mathrm{ppm}$. On incorporation of AAc, the extra peak at $\delta=2.84 \mathrm{ppm}$ was due to the backbone methine proton (-CHCOOH).

The feed ratios of various monomer mixtures, as well as the composition of the resulting copolymers obtained by elemental analysis, are summarized in Table I. The reactivity ratios of AA and AAc were estimated by the graphical method according to the Kelen-Tudos equation. ${ }^{23}$

$$
\begin{equation*}
\eta=r_{1} \xi-\frac{r_{2}(1-\xi)}{\alpha} \tag{1}
\end{equation*}
$$

where r_{1} and r_{2} are the reactivity ratios relating to monomer 1 (acrylamide), and monomer 2 (acrylic acid), respectively. η, ξ, and α are mathematical functions of G and F as defined in Table II. On plotting η versus ξ, a linear plot was obtained. The intercepts at $\xi=0$ and $\xi=1$ gave $-r_{2} / \alpha$ and r_{1}, respectively. The values obtained for r_{1} and r_{2} are 0.427 and 0.945 , respectively.

The reactivity ratios r_{1} and r_{2} were also deter-
mined by the Fineman-Ross method. ${ }^{24}$ The following equation was used:

$$
\begin{equation*}
X(Y-1) / Y=r_{1}\left(X^{2} / Y\right)-r_{2} \tag{2}
\end{equation*}
$$

where $X=M_{1} / M_{2}$ and $Y=\phi_{1} / \phi_{2}$ (see Table II). On plotting $X(Y-1) / Y$ against X^{2} / Y, a straight line was obtained whose slope was r_{1} and the intercept yielded r_{2}. The values obtained for r_{1} and r_{2} by this method are 0.463 and 1.092 respectively. Several values of r_{1} and r_{2}, depending on temperature and reaction conditions, are reported in the literature ${ }^{25,26}$ for the same two monomers. As seen above, both the methods give similar values for r_{1} and r_{2}.

The statistical distribution of monomer sequences, $M_{1}-M_{1}, M_{2}-M_{2}$, and $M_{1}-M_{2}$ was calculated using the following relations ${ }^{5,19}$:

$$
\begin{align*}
& X=\phi_{1}-2 \phi_{1}\left(1-\phi_{1}\right) /\left\{1+\left[\left(2 \phi_{1}-1\right)^{2}\right.\right. \\
& \left.\left.\quad+4 r_{1} r_{2} \phi_{1}\left(1-\phi_{1}\right)\right]^{1 / 2}\right\} \tag{3}\\
& Y=\left(1-\phi_{1}\right)-2 \phi_{1}\left(1-\phi_{1}\right) /\left\{1+\left[\left(2 \phi_{1}-1\right)^{2}\right.\right. \\
& \tag{4}\\
& \left.\left.\quad+4 r_{1} r_{2} \phi_{1}\left(1-\phi_{1}\right)\right]^{1 / 2}\right\}
\end{align*}
$$

Table II Kelen-Tudos Parameters

Sample	$X=\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}$	$Y=\frac{\phi_{1}}{\phi_{2}}$	$G=\frac{X(Y-1)}{Y}$	$F=\frac{X^{2}}{Y}$	$\xi=\frac{F}{\alpha+F}$	$\eta=\frac{G}{(\alpha+F)}$
AA-AAc $(50: 50)$	1.01	0.80	-0.26	1.29	0.26	-0.05
AA-AAc $(65: 35)$	1.88	1.08	0.14	3.29	0.47	0.019
AA-AAc $(85: 15)$	5.75	3.10	3.90	10.64	0.74	0.27

$\alpha=\sqrt{F_{\min } F_{\max }}=3.71 ; M_{2}$ is the mole fraction of acrylic acid in feed, ϕ_{1} and ϕ_{2} are the mole fractions of acrylamide and acrylic acid in the copolymer.

Table III Structural Data for the Copolymers of AA and AAc

Sample	Composition ${ }^{\text {a }}$ (Mole fraction)		"Blockiness"b (Mole fraction)		Alternation ${ }^{\text {b }}$ (Mole fraction)	Mean Sequence Length ${ }^{\text {c }}$		
	$\begin{aligned} & \mathrm{AA} \\ & \left(\phi_{1}\right) \end{aligned}$	AAc $\left(\phi_{2}\right)$	$\begin{gathered} \text { AA-AA } \\ \left(X^{\prime}\right) \end{gathered}$	$\begin{gathered} \text { AAc-AAc } \\ \left(Y^{\prime}\right) \end{gathered}$	$\begin{gathered} \text { AA-AAc } \\ \left(Z^{\prime}\right) \end{gathered}$	$\mu \mathrm{AA}$	$\mu \mathrm{AAc}$	$\frac{\mu \mathrm{AA}}{\mu \mathrm{AAc}}$
AA-AAc $(50: 50)$	0.44	0.56	0.14	0.260	0.600	1.3	2.2	0.6
$\begin{aligned} & \text { AA-AAc } \\ & \quad(65: 35) \end{aligned}$	0.52	0.48	0.215	0.175	0.610	1.5	1.9	0.8
$\begin{aligned} & \text { AA-AAc } \\ & \quad(85: 15) \end{aligned}$	0.76	0.24	0.552	0.032	0.417	2.4	1.3	1.8

${ }^{\text {a }}$ From elemental analysis.
${ }^{\mathrm{b}}$ Statistically calculated using reactivity ratios (ref. 12).
${ }^{c}$ Using Kelen-Tudos reactivity ratio

$$
\begin{align*}
Z=4 \phi_{1}\left(1-\phi_{1}\right) /\{1+ & {\left[\left(2 \phi_{1}-1\right)^{2}\right.} \\
& \left.\left.+4 r_{1} r_{2} \phi_{1}\left(1-\phi_{1}\right)\right]^{1 / 2}\right\} \tag{5}
\end{align*}
$$

where r_{1} and r_{2} are the reactivity ratios of AA and AAc, respectively. ϕ_{1} is the mole fraction of acrylamide in the copolymer, obtained from elemental analysis. The mole fractions of $1-1,2-$ 2 , and $1-2$ sequences are designated by X^{\prime}, Y^{\prime}, and Z^{\prime}, respectively. Mean sequence lengths μ_{AA} and μ_{AAc} were calculated utilizing the relations:

$$
\begin{align*}
\mu_{\mathrm{AA}} & =1+r_{1}\left[\phi_{1}\right] /\left[\phi_{2}\right] \tag{6}\\
\mu_{\mathrm{AAc}} & =1+r_{2}\left[\phi_{2}\right] /\left[\phi_{1}\right] \tag{7}
\end{align*}
$$

The intermonomer linkages and mean sequence length distributions for the AA-AAc copolymers are listed in Table III. For the series of AA-AAc copolymers, μ_{AA} varied from 1.3 at $0.44 / 0.56$ mole ratio of $\mathrm{AA} / \mathrm{AAc}$ in the copolymer to 2.4 with a $0.76 / 0.24$ mole ratio. The calculated mole fraction of AA-AAc linkages in each copolymer was relatively high, indicating an alternating tendency.

TGA of PAA, PAAc, and copolymer AA-AAc ($50: 50$) systems are given in Figure 5. The thermogram of the copolymer falls in between those of the corresponding homopolymers, implying a somewhat intermediate thermal stability. Two stage decomposition was observed in all cases, except for PAA. The first-stage decomposition of PAAc started at $\sim 240^{\circ} \mathrm{C}$. This is due to the formation of anhydride linkages. Similar values were reported earlier for PAAc. ${ }^{27}$ Heating above 300$350^{\circ} \mathrm{C}$ results in rapid decomposition to monomer, carbon dioxide, and volatile hydrocarbons. TGA of

PAA was three-staged, as observed before. ${ }^{28}$ First, the loss of water, which is nonstoichiometric, occurred. This is followed by subsequent loss of ammonia and other gaseous products from the polyacrylonitrile structure formed during decomposition of polyacrylamide, and partly from the remaining polyacrylamide in the course of heating up to $600^{\circ} \mathrm{C}$. ${ }^{29}$

The Ozawa method, ${ }^{30}$ a dynamic analysis technique, was also used for the determination of activation energy. Thermograms were recorded at various heating rates of 10,15 , and $20 \mathrm{~K} \mathrm{~min}^{-1}$,

Figure 5 TG curves of (1) PAA, (2) copolymer AAAAc (50:50), and (3) PAAc at heating rate of 10 K $\min ^{-1}$ in air.

Figure 6 Plot of $\log \beta$ vs. $1 / T$ for PAA. Values of (1 $-\alpha$) are (a) 0.50; (b) 0.55; (c) 0.60; (d) 0.65, and (e) $0.70 . \beta$ is the heating rate $\left(\mathrm{K} \mathrm{min}^{-1}\right)$.
in air. The fraction of decomposition, α, was obtained by the following equation:

$$
\begin{equation*}
\alpha=\left(W_{0}-W_{t}\right) /\left(W_{0}-W_{f}\right) \tag{8}
\end{equation*}
$$

where W_{0} is the initial weight of polymer, W_{t} is the weight of the polymer at temperature t, and W_{f} is the final weight. $(1-\alpha)$ values were found for each heating rate from the TG curves; ($1-\alpha$) values obtained were plotted against $1 / T$. According to Ozawa's method, ${ }^{30}$ the plot of $\log \beta$ (where β is the heating rate) against the reciprocal of absolute temperature, for different values of $(1-\alpha)$ is linear. The activation energy of decomposition was obtained from the slope of the above linear plot, ${ }^{30}$ using the equation

$$
\begin{equation*}
\text { Slope }=-0.4567(E / R) \tag{9}
\end{equation*}
$$

The plot of $\log \beta$ versus $1 / T$, for PAA, at different values of $(1-\alpha)$ each differing by 0.05 , is shown in Fig. 6. The activation energy values at different ($1-\alpha$) are given in Table IV. The activation energies of decomposition varied with ($1-\alpha$) and were not exactly constant. The activation energy of decomposition for PAA in a nitrogen atmosphere was $157.5 \pm 1.71 .{ }^{29}$ This indicates higher
stability of PAA in a nitrogen atmosphere, as expected.

The activation energy associated with each stage of decomposition was also evaluated by the wellknown Broido's method. ${ }^{31-33}$ The equation used for the calculation of activation energy (E) was:

$$
\begin{equation*}
\ln \ln (1 / Y)=(-E / R)(1 / T)+\text { constant } \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
Y=\left(W_{t}-W_{\alpha}\right) /\left(W_{0}-W_{\alpha}\right) \tag{11}
\end{equation*}
$$

that is, Y is the fraction of the number of initial molecules not yet decomposed, W_{t} is the weight at any time t, W_{α} is the weight at infinite time (= zero), and W_{0} is the initial weight. A plot of $\ln \ln (1 / Y)$ versus $1 / T$ [eq. (10)] gives an excellent approximation to a straight line over a range of $0.999>Y>0.001$. The slope is related to the activation energy. Representative plots are shown in Figure 7. The values for activation energy of decomposition are listed in Table V.

DSC curves for PAAc, PAA, and copolymer AAAAc ($85: 15$) are shown in Figures $8-10$. Values of glass transition temperature (T_{g}) reported for PAAc in the literature are $106^{\circ} \mathrm{C},{ }^{34} 130^{\circ} \mathrm{C},{ }^{35}$ and $180^{\circ} \mathrm{C} .{ }^{36}$ The T_{g} of PAAc increases with increasing anhydride concentration, which occurs primarily by intramolecular reactions. Decarboxylation also occurs simultaneously with water elimination, but at a much slower rate. ${ }^{37}$ DSC of PAAc (Fig. 8) shows a T_{g} at $116^{\circ} \mathrm{C}$ and the enthalpy change associated with it was $60.5 \mathrm{~J} \mathrm{~g}^{-1}$. Melting temper-

Table IV The Activation Energies of Decomposition of Various Homopolymers and Copolymers

Polymer Sample	Activation Energy, $E\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ $(1-\alpha)^{\mathrm{a}}$			
PAA	30.4	28.0	28.1	24.9
	(0.50)	(0.55)	(0.60)	(0.65)
AA-AAc				
$(85: 15)$	83.9	85.1	82.1	83.0
	(0.35)	(0.45)	(0.50)	(0.55)
AA-AAc				
$(65: 35)$	84.5	81.8	84.5	78.4
PAAc	(0.30)	(0.35)	(0.40)	(0.45)
	57.8	54.8	47.7	45.7
	(0.40)	(0.45)	(0.50)	(0.55)

[^1]

Figure 7 Plot of $\ln \ln (1 / Y)$ vs. $1 / T$ for (\bullet) PAA, ($\mathbf{\Delta}$) AA-AAc (85: 15), and (■) PAAc.
ature, T_{m}, of PAAc was $236^{\circ} \mathrm{C}$ and the enthalpy change associated with it was $486 \mathrm{~J} \mathrm{~g}^{-1} .{ }^{38}$ The fusion temperature and the energy change associated with the respective phase transitions are also listed in Table V. T_{g} of PAA (Fig. 9) was observed at $84.8^{\circ} \mathrm{C}$ and the onset of softening temperature occurred at $\sim 190^{\circ} \mathrm{C}$. Reported values were $153^{\circ} \mathrm{C}$ and $210^{\circ} \mathrm{C}$, respectively. ${ }^{39}$ AA-AAc copolymers showed an enhancement in T_{g} (Fig. 10) due to specific interactions between acrylamide and acrylic acid moieties.

Figure 8 DSC curve of PAAc.

Figure 9 DSC curve of PAA.

The viscosity of solutions of PAA and copolymers AA-AAc ($85: 15$), AA-AAc ($65: 35$), and AA-AAc ($50: 50$) was studied at different temperatures of 35,40 , and $45^{\circ} \mathrm{C}$. The study was done in aqueous medium and in the presence of various concentrations of different electrolytes. Intrinsic viscosity was calculated using the following equations (Huggins \& Kraemer):

$$
\begin{align*}
\eta_{\mathrm{sp}} / C & =[\eta]+K^{\prime}[\eta]^{2} C \tag{12}\\
\ln \eta_{r} / C & =[\eta]-K^{\prime \prime}[\eta]^{2} C \tag{13}
\end{align*}
$$

where K^{\prime} and $K^{\prime \prime}$ are constants for a given polymer/solvent/temperature system. For many linear flexible polymer systems, K^{\prime} often indicates the measure of the solvent power; the poorer the solvent, the higher the value of K^{\prime}. The $K^{\prime}-K^{\prime \prime}$ values were found to be ~ 0.5, as expected. ${ }^{40-42}$ Intrinsic viscosities of various systems at different temperature and some representative values of $K^{\prime}-K^{\prime \prime}$ are given in Table VI. Some representa-

Figure 10 DSC curve of AA-AAc (85: 15).

Table V Activation Energy of Decomposition, Fusion Temperature, and Enthalpy Change Values for Different Systems

	Activation Energy $(E)^{\mathrm{a}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Phase Transition Polymer Systems	First Stage	Second Stage

${ }^{a}$ Calculated using Broidós method at a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$, in air.
tive plots are shown in Fig. 11. The variation of $[\eta$] with temperature depended on the salt concentration. [η] of PAA in $\mathrm{H}_{2} \mathrm{O}$ and in presence of lower concentrations of electrolytes $\left[\mathrm{NaNO}_{3}\right.$ and $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$] showed a decrease with increase in temperature. Other systems showed an increase in $[\eta]$ with increase in temperature. The decrease in [η] with increasing temperature indicates a decrease in hydrodynamic volume of polymer molecules. This is due to conformational and solvent association changes with increasing temperature. ${ }^{43-45}$ Increase in temperature of a polymer
solution generates two antagonistic effects. ${ }^{43-45}$ First, increase in temperature generally leads to an increase in solvent power, i.e., solubility of the polymer in a solvent increases. This results in uncoiling of the polymer chains, leading to increase in $[\eta]$ with temperature. Second, increase in temperature may lower the rotational barrier, thereby enhancing the degree of rotation about a skeletal bond, forcing the molecular chains to assume a more compact coiled configuration. This leads to a decrease in [η] with increase in temperature. The decrease in $[\eta]$ with increase in tem-

Table VI Intrinsic Viscosities of Various Polymer Systems at Different Temperatures in Aqueous Solutions

Polymer Systems/Solvent	Intrinsic Viscosity [η] ($\mathrm{d} l \mathrm{~g}^{-1}$)			$\begin{aligned} & K^{\prime}-K^{\prime \prime} \\ & \left(40^{\circ} \mathrm{C}\right) \end{aligned}$
	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	
PAA/ $/ \mathrm{H}_{2} \mathrm{O}$	2.98	2.91	2.62	0.51
PAA/0.05M NaNO_{3}	3.85	3.68	3.40	0.51
PAA/ $0.3 \mathrm{M} \mathrm{NaNO}_{3}$	3.87	3.67	3.58	0.50
PAA/ 0.5 M NaNO 3	3.75	3.91	3.94	0.50
PAA/0.1M Al($\left.\mathrm{NO}_{3}\right)_{3}$	4.00	3.74	3.56	0.49
PAA/ $0.3 \mathrm{M} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	3.97	4.04	4.53	0.50
$\mathrm{PAA} / 0.5 \mathrm{M} \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	4.10	4.19	4.23	0.50
AA-AAc (65:35)/0.05M NaNO_{3}	1.52	1.62	1.74	0.49
AA-AAc (65:35)/0.1M NaNO_{3}	1.52	1.54	1.66	0.52
AA-AAc (65:35)/0.5M NaNO_{3}	1.52	1.53	1.58	0.48
AA-AAc (85: 15)/0.3M NaNO_{3}	2.60	2.77	3.07	0.50
AA-AAc (85: 15)/0.5M NaNO_{3}	2.36	2.73	2.92	0.50

Figure 11 Typical plot of (1) η_{sp} / C and (2) $\ln \eta_{r} / C$ versus concentration for AA-AAc $(85: 15)$ at (\bullet) $35^{\circ} \mathrm{C}$, ($\mathbf{\Delta}) 40^{\circ} \mathrm{C}$, and (■) $45^{\circ} \mathrm{C}$ in 0.5 M aqueous NaNO_{3}.
perature for various acrylamide-based copolymers was observed earlier. ${ }^{5}$ On the other hand, polyelectrolytes like PAAc show an increase in [η] with increasing temperature. ${ }^{46}$

The effect of different concentrations of NaNO_{3} on the viscosity behavior of PAA is different from that on the viscosity behavior of AA-AAc copolymers. [η] of PAA shows a maximum when plotted

Figure 12 Plot of ($\bullet)^{-1 / 2}$ vs. [η] for AA-AAc (65 : $35) / \mathrm{NaNO}_{3}$ at $40^{\circ} \mathrm{C}$, and ($\mathbf{\Delta}$) I against $[\eta$] for PAA/ NaNO_{3} at $35^{\circ} \mathrm{C}$.

Figure 13 Plot of (1) η_{sp} / C and (2) $\ln \eta_{r} / C$ vs. concentration for ($)$ AA-AAc ($50: 50$) $/ 0.5 M \mathrm{NaNO}_{3}$ at $45^{\circ} \mathrm{C}$, and ($\mathbf{\Delta}$) AA-AAc (50:50)/ $\mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}$.
against the ionic strength of NaNO_{3} (Fig. 12). This behavior for acrylamide-based copolymers was observed earlier. ${ }^{5}$
$[\eta]$ of AA-AAc copolymer ($65: 35$) varied linearly with reciprocal square root of ionic strength, i.e., $I^{-1 / 2}$ (Fig. 12). This behavior was observed for polyelectrolytes by a number of workers. ${ }^{19,47-49}$

Figure 14 Plot of $\left(\eta_{\text {sp }} / C\right)^{-1}$ vs. ($\left.C\right)^{1 / 2}$ for (\bullet) AA-AAc ($50: 50) / \mathrm{H}_{2} \mathrm{O}$ at $35^{\circ} \mathrm{C}$ and ($\left.\mathbf{(}\right) \mathrm{AA}-\mathrm{AAc}(50: 50) / 0.5 M$ NaNO_{3} at $40^{\circ} \mathrm{C}$.

Table VII Voluminosity of Various Polymers at Different Temperatures

		Voluminosity $\left(V_{E}\right)$	
Polymer Systems/Solvent	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$
$\mathrm{PAA} / \mathrm{H}_{2} \mathrm{O}$	1.16		
$\mathrm{PAA} / 0.05 M \mathrm{NaNO}_{3}$	1.48	1.17	1.04
$\mathrm{PAA} / 0.3 M \mathrm{NaNO}_{3}$	1.49	1.44	1.34
$\mathrm{PAA} / 0.5 M \mathrm{NaNO}_{3}$	1.46	1.48	1.41
$\mathrm{PAA} / 0.1 M \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	1.50	1.45	1.53
$\mathrm{PAA} / 0.3 M \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	1.51	1.54	1.40
$\mathrm{PAA} / 0.5 M \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	1.59	1.60	1.55
$\mathrm{AA}-\mathrm{AAcc}(65: 35) / 0.05 M \mathrm{NaNO}_{3}$	0.57	0.61	1.64
$\mathrm{AA}-\mathrm{AAc}(65: 35) / 0.1 M \mathrm{NaNO}_{3}$	0.59	0.60	0.64
$\mathrm{AA}-\mathrm{AAc}(65: 35) / 0.5 M \mathrm{NaNO}_{3}$	0.58	0.59	0.65
$\mathrm{AA}-\mathrm{AAc}(85: 15) / 0.3 M \mathrm{NaNO}_{3}$	1.01	1.06	0.63
$\mathrm{AA}-\mathrm{AAc}(85: 15) / 0.5 M \mathrm{NaNO}_{3}$	0.90	1.09	1.14

This indicates that copolymers, having acrylic acid as a comonomer, act as polyelectrolytes in aqueous media. There is an electrical double layer at the solid-liquid interface (i.e., at the polyionsolvent interface). The double layer thickness at the polyion-solvent interface decreases with the addition of electrolyte. Hence, there is less overlapping of the double layers and consequently less viscosity with increase in the concentration of the salt.

The viscosities of AA-AAc (50:50), AA-AAc ($65: 35$), and AA-AAc ($85: 15$) in water, like other polyelectrolytes, showed a unique dependence on concentration. $\eta_{\text {sp }} / C$ for the above-mentioned copolymers in water increases with dilution, contrary to the behavior of nonionic polymers. Representative plots are shown in Figure 13. As the solution is diluted, the polymer molecules no
longer fill all of the space and intervening regions extract some of the mobile ions. Net charges develop in the domains of the polymer molecules, causing them to expand. As this process continues with further dilution, the expansive force increases. At high dilutions polymer molecules lose most of their mobile ions and are extended virtually to their maximum length. ${ }^{50}$ This leads to high values of η_{sp} / C. Such data can be satisfactorily handled through the use of the empirical relation

$$
\begin{equation*}
\eta_{\mathrm{sp}} / C=A /\left(1+B C^{1 / 2}\right) \tag{14}
\end{equation*}
$$

where A and B are constants. Straight lines were obtained on plotting $\left(\eta_{\text {sp }} / C\right)^{-1}$ against $C^{1 / 2}$ (Fig. 14). ${ }^{50}$ Addition of electrolyte suppresses the loss

Table VIII Shape Factor $\boldsymbol{\nu}$ at Various Temperatures

	Shape Factor ν		
Polymer Systems/Solvent	$35^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$
PAA/ $\mathrm{H}_{2} \mathrm{O}$	2.6	2.5	2.5
$\mathrm{PAA} / 0.05 M \mathrm{NaNO}_{3}$	2.6	2.6	2.5
$\mathrm{PAA} / 0.3 M \mathrm{NaNO}_{3}$	2.6	2.6	2.5
$\mathrm{PAA} / 0.5 M \mathrm{NaNO}_{3}$	2.6	2.6	2.5
$\mathrm{PAA} / 0.1 M \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	2.6	2.5	2.5
$\mathrm{PAA} / 0.3 M \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	2.6	2.5	2.5
$\mathrm{PAA} / 0.5 M \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$	2.6	2.6	2.6
$\mathrm{AA}-\mathrm{AAc}(65: 35) / 0.05 M \mathrm{NaNO}_{3}$	2.6	2.6	2.6
$\mathrm{AA}-\mathrm{AAc}(65: 35) / 0.1 M \mathrm{NaNO}_{3}$	2.5	2.6	2.5
$\mathrm{AA}-\mathrm{AAc}(65: 35) / 0.5 M \mathrm{NaNO}_{3}$	2.6	2.6	2.5
$\mathrm{AA}-\mathrm{AAc}(85: 15) / 0.3 M \mathrm{NaNO}_{3}$	2.6	2.6	2.6
$\mathrm{AA}-\mathrm{AAc}(85: 15) / 0.5 M \mathrm{NaNO}_{3}$	2.5	2.5	2.6

Table IX Viscosity Activation Parameters at Infinite Dilution

Polymer Systems/Solvent	$\begin{array}{c}\Delta H_{\text {vis }}^{\ddagger 0} \\ \left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\end{array}$	$\begin{array}{c}\Delta S_{\text {vis }}^{\ddagger 0} \\ \left(\mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)\end{array}$	$\begin{array}{c}\Delta G_{\text {vis }}^{\ddagger 0} \\ (\mathrm{~kJ} \mathrm{~mol} \\ 3\end{array}$
303 K			

of mobile ions, hence the rise in $\eta_{\text {sp }} / C$ at low concentrations was eliminated and the conformity with Huggins' equation was restored.

The relative viscosity data at different concentrations were used for the calculation of voluminosity $\left(V_{E}\right)$ of polymer solutions at a given temperature. ${ }^{40-42} V_{E}$ was obtained by plotting Y against concentration $C\left(\mathrm{~g} \mathrm{ml}^{-1}\right)$ where

$$
\begin{equation*}
Y=\left(\eta_{r}^{0.5}-1\right) / C\left(1.35 \eta_{r}^{0.5}-0.1\right) \tag{15}
\end{equation*}
$$

The straight line then obtained was extrapolated to $C=0$ and the intercept yielded V_{E}. The values are listed in Table VII. The shape factor ν was calculated from the equation

$$
\begin{equation*}
[\eta]=\nu \cdot V_{E} \tag{16}
\end{equation*}
$$

The shape factor gives an idea about the shape of macromolecules in solution. ${ }^{51}$ Values of shape factor obtained for various systems are cited in Table VIII. All values were ~ 2.5, suggesting spherical conformations for the macromolecules in solution ${ }^{52}$ both in presence and absence of electrolytes. Moreover, ν values were found to be independent of temperature (varying between 2.5 and 2.6), indicating that the minor axis varies by $\sim 1 \%$.

Various activation parameters of the viscous flow were evaluated using the Frenkel-Eyring equation ${ }^{52}$

$$
\begin{equation*}
\eta=N h / V \exp \Delta G_{\text {vis }}^{\ddagger} / R T \tag{17}
\end{equation*}
$$

where V is the molar volume of the solvent, N is the Avogadro number, h is the Planck's constant,
R is the gas constant, T is the temperature, and $\Delta G_{\text {vis }}^{\ddagger}$ is the free energy of activation for the viscous flow. Equation (17) can be rewritten as

$$
\begin{align*}
\ln (\eta V / N h)=\Delta G_{\mathrm{vis}}^{\ddagger} / R T & \\
& =\Delta H_{\mathrm{vis}}^{\dagger} / R T-\Delta S_{\text {vis }}^{\ddagger} / R \tag{18}
\end{align*}
$$

where $\Delta H_{\text {vis }}^{\ddagger}$ and $\Delta S_{\text {vis }}^{\ddagger}$ are the enthalpy and entropy of activation for the viscous flow. ${ }^{40-42} \ln (\eta V /$ $N h$), when plotted against T^{-1}, yields a linear graph, with slope and intercept giving $\Delta H_{\mathrm{vis}}^{\ddagger}$ and $\Delta S_{\text {vis }}^{\ddagger}$, respectively. On plotting $\Delta H_{\text {vis }}^{\ddagger}$ and $\Delta S_{\text {vis }}^{\ddagger}$ values against concentration of polymer and extrapolating to $C=0, \Delta H_{\text {vis }}^{\ddagger 0}$ and $\Delta S_{\text {vis }}^{\ddagger 0}$ values were obtained, respectively. $\Delta G_{\text {vis }}^{\ddagger 0}$ values were then computed by the well-known thermodynamic relation:

$$
\begin{equation*}
\Delta G_{\mathrm{vis}}^{\ddagger 0}=\Delta H_{\mathrm{vis}}^{\ddagger 0}-T \Delta S_{\mathrm{vis}}^{\ddagger 0} \tag{19}
\end{equation*}
$$

All activation parameters obtained at infinite dilution are given in Table 9. Positive values for $\Delta G_{v i s}^{\geqslant 0}$, $\Delta H_{\mathrm{vis}}^{\ddagger 0}$, and $\Delta S_{\mathrm{vis}}^{\ddagger 0}$ were obtained for all systems. $\Delta G_{\text {vis }}^{\ddagger 0}$ remained almost constant for all systems studied. The $\Delta H_{\mathrm{vis}}^{\ddagger 0}$ and $\Delta S_{\mathrm{vis}}^{\ddagger 0}$ values vary with electrolyte and also with electrolyte concentration, but no regularity in the variations were noted.

Interestingly, on plotting $\Delta H_{\text {vis }}^{\ddagger 0}$ vs. $\Delta S_{\text {vis }}^{\ddagger 0}$ for all systems, a linear plot was obtained. The slope of the plot yielded a temperature of 312 K . Thus, at the temperature of 312 K , free energy of activation for the viscous flow becomes independent of the entropic forces and is solely governed by the enthalpic forces.

Thanks are due to IUC-DAEF, Indore, for financial assistance. Thanks are also due to the Research Laboratory of Sun Pharmaceuticals, Baroda, for DSC measurements and for nitrogen estimation.

REFERENCES

1. N. J. Bikales, Ed., Water Soluble Polymers, Plenum Press, New York, 1973.
2. F. Halverson and H. P. Panzer, in Encyclopaedia of Chemical Technology, Vol. 10, M. Grayson, Ed., Wiley, New York, 1980.
3. R. C. Schulz, in Encyclopaedia of Polymer Science and Technology, Vol. 1, J. I. Kroschwitz, Ed., Wiley, New York, 1985.
4. J. W. Brietebach and J. W. Kauffman, Makromol. Chem., 175, 2597 (1974).
5. C. L. McCormick and G. S. Chen, J. Polym. Sci., 22, 3649, 3633 (1984).
6. M. A. Moharram, L. S. Balloomal, and H. M. ElGendy, J. Appl. Polym. Sci., 59, 987 (1996).
7. J. Yong and R. H. Huang, CA 124 : 56838a (1996).
8. Y. Morishima, T. Sato, and M. Kamachi, Macromolecules, 29, 3960 (1996).
9. A. Tonson and M. I. William F, CA, 124: 147182 y (1996).
10. K. C. Taylor, E. D. Nasr, and A. Hisham, J. Pet. Sci. Engg., 12, 9 (1994).
11. Y. Zhao, J. Shen, and W. Li, CA 122: 188269 j (1995).
12. K. D. Branham, D. L. Danis, J. C. Middleton, and C. L. McCormick, Polymer, 35, 4429 (1994).
13. T. J. Suen, A. M. Schiller, and W. H. Russel, in Polymerization and Polycondensation Processes, No. 34, N. A. J. Platzer, Ed., Advances in Chemistry Series, American Chemical Society, Washington, D.C., 1962.
14. S. H. Pinner, J. Polym. Sci., 10, 379 (1953).
15. W. M. Kulicke and H. H. Horl, Colloid Polym. Sci., 263, 530 (1985).
16. R. M. Silverstien, R. G. Bessler, and T. C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed. Wiley, New York, 1981.
17. H. C. Haas and R. L. MacDonald, J. Appl. Polym. Sci., 16, 1972 (1972).
18. C. L. McCormick, G. S. Chen, and B. H. Hutchinson, J. Appl. Polym. Sci., 27, 3103 (1982).
19. C. L. McCormick and K. P. Blackmon, Polymer, 27, 1971 (1986).
20. S. J. Igarshi, Polym. Sci., Polym. Lett. Ed., 1, 359 (1963).
21. P. Bajaj, M. Goyal, and R. B. Chavan, J. Appl. Polym. Sci., 53, 1771 (1994).
22. F. Candau, Z. Zekhnini, F. Heatley, and E. Franta, Colloid Polym. Sci., 264, 676 (1986).
23. T. Kelen and F. Tudos, J. Macromol. Sci. Chem., 9, 1 (1975).
24. M. Fineman and S. Ross, J. Polym. Sci., V, 259 (1950).
25. G. Smets and A. M. Hesbain, J. Polym. Sci., XL, 217 (1959).
26. J. Brandrup and E. H. Immergut, Eds., 2nd ed., Polymer Handbook, Wiley, New York, 1975.
27. D. H. Grand and N. Grassie, Polymer, 1, 125 (1960).
28. L. M. Minsk, C. K. Chik, G. N. Meyer, and W. O. Kenyon, J. Polym. Sci., Polym. Chem. Ed., 12, 133 (1974).
29. M. Tutas, M. Saglam, M. Yuksel, and C. Guler, Thermochim. Acta, 111, 121 (1987).
30. T. Ozawa, J. Therm. Anal., 2, 301 (1970).
31. A. Broido, J. Polym. Sci., 7, 1761 (1969).
32. R. Patel, K. C. Patel, B. N. Mankad, and R. D. Patel, Proc. Indian Acad. Sci., (Chemical Science), 89, 561 (1980).
33. R. Joseph, S. Devi, and A. K. Rakshit, J. Appl. Polym. Sci., 50, 173 (1993).
34. L. J. T. Huges and D. B. Fordyce, J. Polym. Sci., 22, 509 (1956).
35. A. Odajima, A. E. Woodward, and J. A. Sauem, J. Polym. Sci., 55, 181 (1961).
36. H. L. Greenwald and L. S. Luskin, in Handbook of Water Soluble Gums and Resins, R. L. Davidson, Ed., McGraw-Hill, New York, 1980.
37. A. Eisenberg and T. Yokoyama, J. Polym. Sci., 7, 1717 (1969).
38. K. H. Illers, Z. Kolloid, 190, 16 (1963).
39. M. L. Miller, Can. J. Chem., 36, 309 (1958).
40. E. A. Collins, J. Bares, and F. W. Billmeyer, Experiments in Polymer Science, 1st ed., Wiley, New York, 1970.
41. V. Vangani and A. K. Rakshit, J. Appl. Polym. Sci., 45, 1165 (1992).
42. R. Joseph, S. Devi, and A. K. Rakshit, Polym. Int., 26, 89 (1991).
43. V. Vangani and A. K. Rakshit, J. Appl. Polym. Sci., 60, 1005 (1996).
44. G. M. Patel, N. K. Patel, and S. Kansara, Polym. Int., 35, 83 (1994).
45. A. K. M. Assaduzzaman, A. K. Rakshit, and S. Devi, J. Appl. Polym. Sci., 47, 1813 (1993).
46. A. Silberberg, J. Eliassaf, and A. Katchalsky, J. Polym. Sci., 23, 259 (1957).
47. I. Noda, T. T. Suge, and M. Nagasawa, J. Phys. Chem., 74, 710 (1970).
48. D. T. F. Pals and J. J. Hermans, Rec. Trav. Chim., 71, 433 (1952).
49. P. J. Flory, J. Chem. Phys., 21, 162 (1953).
50. P. J. Flory, Principles of Polymer Chemistry, 1st ed., Cornell University Press, New York, 1953.
51. H. H. Kohler and J. Strand, J. Phys. Chem., 24, 7628 (1990).
52. G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers, Mir Publishers, Moscow, 1980.

[^0]: Correspondence to: A. K. Rakshit.
 Journal of Applied Polymer Science, Vol. 66, 45-56 (1997)
 © 1997 John Wiley \& Sons, Inc.
 CCC 0021-8995/97/010045-12

[^1]: (Ozawa method, see text).
 ${ }^{a}$ Values of $(1-\alpha)$ are given in parentheses.

